SparseNet: Coordinate Descent With Nonconvex Penalties.
نویسندگان
چکیده
We address the problem of sparse selection in linear models. A number of nonconvex penalties have been proposed in the literature for this purpose, along with a variety of convex-relaxation algorithms for finding good solutions. In this article we pursue a coordinate-descent approach for optimization, and study its convergence properties. We characterize the properties of penalties suitable for this approach, study their corresponding threshold functions, and describe a df-standardizing reparametrization that assists our pathwise algorithm. The MC+ penalty is ideally suited to this task, and we use it to demonstrate the performance of our algorithm. Certain technical derivations and experiments related to this article are included in the Supplementary Materials section.
منابع مشابه
Strong rules for nonconvex penalties and their implications for efficient algorithms in high-dimensional regression
We consider approaches for improving the efficiency of algorithms for fitting nonconvex penalized regression models such as SCAD and MCP in high dimensions. In particular, we develop rules for discarding variables during cyclic coordinate descent. This dimension reduction leads to a substantial improvement in the speed of these algorithms for high-dimensional problems. The rules we propose here...
متن کاملCoordinate Descent Algorithms for Nonconvex Penalized Regression, with Applications to Biological Feature Selection By
A number of variable selection methods have been proposed involving nonconvex penalty functions. These methods, which include the smoothly clipped absolute deviation (SCAD) penalty and the minimax concave penalty (MCP), have been demonstrated to have attractive theoretical properties, but model fitting is not a straightforward task, and the resulting solutions may be unstable. Here, we demonstr...
متن کاملCoordinate Descent Algorithms for Nonconvex Penalized Regression, with Applications to Biological Feature Selection.
A number of variable selection methods have been proposed involving nonconvex penalty functions. These methods, which include the smoothly clipped absolute deviation (SCAD) penalty and the minimax concave penalty (MCP), have been demonstrated to have attractive theoretical properties, but model fitting is not a straightforward task, and the resulting solutions may be unstable. Here, we demonstr...
متن کاملEfficient random coordinate descent algorithms for large-scale structured nonconvex optimization
In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function formed as a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of the above structure, we propose random ...
متن کاملAn Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression
We propose and study a new iterative coordinate descent algorithm (QICD) for solving nonconvex penalized quantile regression in high dimension. By permitting different subsets of covariates to be relevant for modeling the response variable at different quantiles, nonconvex penalized quantile regression provides a flexible approach for modeling high-dimensional data with heterogeneity. Although ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Statistical Association
دوره 106 495 شماره
صفحات -
تاریخ انتشار 2011